The Endosomal Sorting Complex Required for Transport Pathway Mediates Chemokine Receptor CXCR4-promoted Lysosomal Degradation of the Mammalian Target of Rapamycin Antagonist DEPTOR Journal Article


Authors: Verma, R; Marchese, A
Article Title: The Endosomal Sorting Complex Required for Transport Pathway Mediates Chemokine Receptor CXCR4-promoted Lysosomal Degradation of the Mammalian Target of Rapamycin Antagonist DEPTOR
Abstract: G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Galphai or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.
Journal Title: The Journal of biological chemistry
Volume: 290
Issue: 11
ISSN: 1083-351X; 0021-9258
Publisher: by The American Society for Biochemistry and Molecular Biology, Inc  
Journal Place: United States
Date Published: 2015
Start Page: 6810
End Page: 6824
Language: eng
DOI/URL:
Notes: LR: 20150315; CI: (c) 2015; JID: 2985121R; OID: NLM: PMC4358107 [Available on 03/13/16]; OTO: NOTNLM; PMCR: 2016/03/13 00:00; 2015/01/20 [aheadofprint]; ppublish