Dosimetric assessment of brass mesh bolus and transparent polymer-gel type bolus for commonly used breast treatment delivery techniques. Journal Article


Authors: Fiedler, DA; Hoffman, S; Roeske, JC; Hentz, CL; Small, W; Kang, H
Article Title: Dosimetric assessment of brass mesh bolus and transparent polymer-gel type bolus for commonly used breast treatment delivery techniques.
Abstract: We investigated skin dose enhancements of brass mesh bolus (BMB) and a recently developed transparent polymer-gel bolus (PGB) for clinically relevant breast treatment delivery techniques. The dose enhancement of the breast surface with BMB and PGB were compared to that of tissue-equivalent bolus. Three breast treatment plans were generated on CT scans of an anthropomorphic chest phantom: tangential step-and-shoot 3D conformal (3DCRT) planned using Field-in-Field (FiF), tangential sliding-window 3DCRT using Electronic Compensator (EC), and volumetric modulated arc therapy (VMAT). All plans were created using 6 MV photons and a prescription dose (Rx) of 180 cGy per fraction. Skin doses of all 3 plans were measured with radiochromic films, separately delivered in triplicate. Each plan was delivered to the phantom without bolus, and then with BMB (1 or 2 layers; 3 or 10 mm tissue-equivalent), PGB, and Superflab (3, 5, and 10 mm tissue-equivalent). Doses were determined by reading the radiochromic films with a flatbed scanner, and analyzing the images using a calibration curve for each specific batch. For all bolus types and plans, surface doses averaged over the 3 measurements were between 88.4% and 107.4% of Rx. Without bolus, average measured skin doses were between 51.2% and 64.2% of Rx. Skin doses with BMB and PGB were comparable to that with tissue-equivalent bolus. Over all 3 treatment delivery techniques, using BMB resulted in average skin doses of 92.8% and 102.1% for 1- and 2 layers, respectively, and using PGB results in average skin doses of 94.8%, 98.2%, and 99.7% for 3, 5, and 10-mm tissue-equivalent, respectively. The average measured skin doses with BMB and PGB agreed within ± 3% compared to the tissue-equivalent thickness bolus. We concluded that BMB and PGB are clinically equivalent in skin dose enhancement for breast treatment as the 3, 5, and 10 mm tissue-equivalent bolus.
Journal Title: Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Publisher: Unknown  
Date Published: 2021