Effects of the Kv7 voltage-activated potassium channel inhibitor linopirdine in rat models of haemorrhagic shock. Journal Article


Authors: Nassoiy, SP; Babu, FS; LaPorte, HM; Byron, KL; Majetschak, M
Article Title: Effects of the Kv7 voltage-activated potassium channel inhibitor linopirdine in rat models of haemorrhagic shock.
Abstract: Recently, we demonstrated that Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements in short-term rat models of haemorrhagic shock. The aim of the present study was to further delineate the therapeutic potential and side effect profile of the Kv7 channel blocker linopirdine in various rat models of severe haemorrhagic shock over clinically relevant time periods. Intravenous administration of linopirdine, either before (1 or 3 mg/kg) or after (3 mg/kg) a 40% blood volume haemorrhage, did not affect blood pressure and survival in lethal haemorrhage models without fluid resuscitation. A single bolus of linopirdine (3 mg/kg) at the beginning of fluid resuscitation after haemorrhagic shock transiently reduced early fluid requirements in spontaneously breathing animals that were resuscitated for 3.5 hours. When mechanically ventilated rats were resuscitated after haemorrhagic shock with normal saline (NS) or with linopirdine-supplemented (10, 25 or 50 µg/mL) NS for 4.5 hours, linopirdine significantly and dose-dependently reduced fluid requirements by 14%, 45% and 55%, respectively. Lung and colon wet/dry weight ratios were reduced with linopirdine (25/50 µg/mL). There was no evidence for toxicity or adverse effects based on measurements of routine laboratory parameters and inflammation markers in plasma and tissue homogenates. Our findings support the concept that linopirdine-supplementation of resuscitation fluids is a safe and effective approach to reduce fluid requirements and tissue oedema formation during resuscitation from haemorrhagic shock.
Journal Title: Clinical and experimental pharmacology physiology
Publisher: Unknown  
Date Published: 2018